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1. Introduction

The use of rapid quenching techniques (e.g. melt-spinning, splat-cooling)
is of great importance in the preparation of rare-earth intermetallic compounds.
The reasons for this are twofold. Firstly, it is possible to prepare intermetallic
phases with a microcrystalline structure which can lead to substantial magnetic
coercivity and, ultimately, good permanent magnets [1]. Secondly, rapid
quenching can produce compounds, both stable and metastable, which cannot
be produced by conventional methods such as arc-melting and induction-
melting [2].

The discovery of the Nd,Fe,,B family of compounds in 1984 [1, 3]
provided the impetus for the widespread use of rapid quenching in the
preparation of intermetallic compounds. It has been demonstrated that the
coercivity of rare-earth intermetallics is strongly dependent on the quench
rate [1]. A comprehensive study of the magnetic and crystallographic properties
of Nd,Fe,,B prepared at different quench rates has been published by Cadogan
et al. [4].

Recently, attention has turned to the tetragonal ThMn,, type compounds
[2, 5, 6] and the compound SmFe,,Ti which has been identified by Coey
et al. [7, 8} as a potential permanent magnet material. A number of rapid
quenching studies of the ThMn,;, compounds have been carried out, with
emphasis on the Sm—Fe-Ti and Sm—Fe-V systems [9—17]. The main aim of
these studies has been the preparation of microcrystalline structures which
exhibit coercivity. Schultz et al. {17] have obtained a coercivity of 1.17 T
in Sm—Fe—V prepared by mechanical alloying. Yamagishi et al. [12] have
obtained a coercivity of 0.98 T by annealing over-quenched SmFe,TiV.

The aim of the present work was the preparation of YFe;,V, in both
the microcrystalline and amorphous states, and the characterization of the
iron magnetization in both states by Mdssbauer spectroscopy.
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2. Experimental details

Ingots of YFe;(V, were prepared by arc-melting in an atmosphere of
titanium-gettered argon. Rapidly quenched YFe oV, was prepared by melt-
spinning in a helium atmosphere on a steel substrate at a peripheral wheel
speed of 40 m s !. The spun material was analyzed by X-ray diffraction
using Cu Ko radiation. ®’Fe Méssbauer spectroscopy was carried out in
conventional transmission mode at 295 K using a °’CoRh source.

3. Results and Discussion

In Fig. 1 we show the X-ray diffraction pattern obtained with rapidly
quenched YFe,,V,. For comparison, the X-ray pattern of crystalline YFe,,V,
[18] is also shown. Despite numerous attempts, we were unable to produce
amorphous YFe,;V,. We note that other authors {11, 14] report similar
experiences with SmFe 4V.,.

The X-ray pattern in Fig. 1 indicates that the rapidly quenched YFe V.
has a microcrystalline ThMn,, structure. The broadening of the x-ray diffraction
lines allows one to obtain an estimate of 450 A for the mean crystallite size
in the spun YFe;,V,, using the Debye—Scherrer method. Saito et al. [10]
studied SmFe,;;Ti and reported that this compound undergoes a phase
transformation from the tetragonal ThMn,, structure to the hexagonal TbCu,
[19] structure as the quenching rate is increased. Simple X-ray diffraction
is unlikely to provide clear evidence for such a transformation since the X-
ray diffraction pattern attributed to the TbCu, structure by Saito et al. could
quite easily be attributed to a broadened microcrystalline ThMn;, pattern.

In Fig. 2 we show the 295 K >"Fe Méssbauer spectrum of microcrystalline
YFe,,V,. The spectrum of erystalline YFe 4V, [18] is included for comparison.
The microcrystalline spectrum was fitted with a distribution of ®’Fe hyperfine
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Fig. 1. Cu Ka X-ray diffraction patterns of (a) crystalline YFe,;,V, [18] and (b) melt-spun
YFe, (V.
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Fig. 2. ®"Fe Mossbauer spectra obtained at 295 K of (a) melt-spun YFe,3V, and (b) crystalline
YFe,,V, [18]. The full lines are fits to the spectra and the vertical bars represent 2% absorption.
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Fig. 3. ®"Fe hyperfine field distribution at 295 K of melt-spun YFe,,V,, deduced from Méssbauer
spectroscopy.

field, using the method of Le Caér and Dubois [20]. The fitted 5"Fe hyperfine
field distribution is shown in Fig. 3. The average °“Fe hyperfine field (at 295
K) in microcrystalline YFe,,V, is 16.5 T, with a standard deviation of 5.9
T. The corresponding average iron magnetic moment is 1.14 ug, assuming
a field-moment conversion of 14.5 T/ug [21]. This average hyperfine field
is significantly lower than the value of 20.1 T obtained with crystalline
YFe oV, [18]. A similar reduction in average °’Fe hyperfine field has been
observed in GdFe;,Al, by Wang et al. [2] and is most probably due to a
reduction in Curie temperature in the microcrystalline material compared
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with the crystalline material [4, 10, 14, 16]. A correlation between isomer
shift (6) and hyperfine field (B) of the form

S(mm s~ ') = —0.26 + 0.005 B(T)

was deduced from the fit to the microcrystalline YFe 4V, spectrum. The mean
isomer shift, relative to a-Fe, is —0.18 mm s~ ! for microcrystalline YFe (V..
The corresponding value for crystalline YFe,,V, is —0.14 mm s~! [18].

4. Conclusions

Microcrystalline YFe,,V, has been prepared by melt-spinning. The average
crystallite size is 450 A, as deduced from X-ray diffraction. Attempts to
prepare amorphous YFe V., by melt-spinning were unsuccessful. The average
57Fe hyperfine field at 295 K, deduced from Méssbauer spectroscopy, is 16.5
T, which corresponds to an average iron moment of 1.14 ug.
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